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Abstract-The paper presents an application of our cluster­
ing technique using generalized tree-like SOMs with evolving 

splitting-merging structures to complex clustering tasks, includ­

ing, in particular, the sample-based and gene-based clustering of 
the Lymphoma human cancer microarray data set. It is worth 
emphasizing that our approach works in a fully unsupervised 
way, i.e., using unlabelled data and without the necessity to 
predefine the number of clusters. It is particularly important 
in the gene-based clustering of microarray data for which the 
number of gene clusters is unknown in advance. In the sample­
based clustering of the Lymphoma data set, our approach gives 
better results than those reported in the literature (some of 

alternative methods require, additionally, the cluster number 
to be defined in advance). In the gene-based clustering of the 
considered microarray data, out approach generates clusters that 
are easily divisible into subclusters related to particular sample 
classes. In some way, it corresponds to subspace clustering that 
is highly desirable in microarray data analysis. 

I. INTRODUCTION 

Gene expression, in general, is the process by which genetic 
information is used to synthesize functional gene products. The 
traditional approach to genomic research was focused on the 
local examination of data on single genes. Presently, microar­
ray technologies (see, e.g., [1]) make it possible to monitor 
and measure the level of expression of tens of thousands 
of genes simultaneously in different experimental samples, 
or in general, under different experimental conditions. The 
microarray data are usually represented by a matrix (referred to 
as the gene expression matrix) with rows representing genes 
and columns corresponding to various specific experimental 
conditions (usually different samples but also different time 
points or different organisms can be considered). Hence, each 
entry of the matrix contains a numerical representation of the 
expression of a particular gene under a given experimental 
condition (e.g., in a given sample). An interpretation of the 
meaning of such an immense amount of biological information 
poses a serious challenge nowadays. One of the essential steps 
in addressing that problem is to discover clusters of genes 
manifesting similar expression patterns (i.e., coexpressed and 
possibly coregulated genes), keeping in mind that it is mean­
ingful to cluster both genes and experimental conditions (e.g., 
samples) [2]. 

We first briefly present a general concept and implementa­
tion of our data clustering (or cluster analysis) technique based 
on tree-like SOMs with evolving splitting-merging structures 

(see also [3]-[5]). It is worth emphasizing that our approach 
works in a fully unsupervised way, i.e., using unlabelled data 
and without a predefined number of clusters. It is particularly 
important in the gene-based clustering of micro array data 
where the number of gene clusters is unknown in advance. 
Then, the operation of the proposed approach is illustrated 
on selected two- and three-dimensional benchmark data sets 
[6] containing data groups of various shapes and densities. 
Finally, the application of our approach to both gene-based 
and sample-based clustering of Lymphoma human cancer 
microarray data set is presented and compared with alternative 
solutions. 

II. A GENERAL CONCEPT AND IMPLEMEN TATION OF A 

CLUSTERING TECHNIQUE BASED ON TREE-LIKE SOMs 
WITH EVOLV ING SPLITTING-MERGING STRUCTURES 

[3]-[5] 

Original SOMs [7], in general, are used to visually display 
topological structures of high dimensional data in lower, usu­
ally two- or three-dimensional space rather than for clustering, 
i.e., partitioning of these data into groups [8]. However, the 
proposed generalized SOMs with evolving tree-like structures 
and structure splitting and merging mechanisms are equipped 
with both data-dimensionality reduction and data-segmentation 
capabilities. The evolution of the tree-like structures of the 
considered networks takes place during the learning pro­
cess and is controlled by three mechanisms: a) automatic 
adjustment of the number of neurons in the network by 
removing low-active neurons from the network and adding 
new neurons in the areas of existing high-active neurons in 
order to take over some of their activities, b) disconnection of 
the tree-like structures into subnetworks, and c) reconnection 
of some of the subnetworks preserving the no-loop spanning­
tree properties. Such structure-evolution mechanisms enable 
the networks to detect data clusters of virtually any shape and 
density including volumetric as well as thin, shell, piece-wise 
linear, polygonal, etc. kinds of clusters. Each detected cluster 
is represented by a single disconnected subnetwork. Hence, the 
number of automatically generated subnetworks is equal to the 
number of clusters. Moreover, our approach also generates a 
mUlti-point prototype (represented by the collection of neurons 
belonging to a given subnetwork) for each cluster. Such 
prototypes can be directly used in clustering/classification 
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tasks by employing the well-known nearest multi-prototype 
algorithm [9]. The proposed solution is a generalization of our 
earlier approaches to automatic determination of the cluster 
numbers and cluster prototypes in data sets [10]-[13]. 

In order to implement the afore outlined concept of the 
data clustering, we first consider the conventional SOM with 
one-dimensional neighborhood (SOM with IDN), i.e., the 
neuron chain. Let's assume that the network has n inputs 
(features, attributes) Xl, X2, ... , Xn and consists of m neurons; 
their outputs are Y1, Y2," " Ym, where Yj = 2:�1 WjiXi, 
j = 1,2, ... ,m and Wji are weights connecting the i-th input 
of the network with the output of the j-th neuron. Using vector 
notation (x = (Xl, X2, ... ,Xn)T, Wj = (Wj1 ' Wj2, ... ,Wjnf), 
Yj = wf x. The learning data consists of L input vectors Xl 
(I = 1,2, ... , L). In the first stage of any Winner-Takes-Most 
(WTM) learning algorithm that can be used in the learning 
process of the considered network, the neuron jx, which wins 
in competition of neurons when the learning vector Xl is 
presented to the network must be determined. Assuming that 
the normalization of learning vectors is performed, the winning 
neuron jx is selected in the following way: 

(1) 

where d(Xl' W j) is a distance measure between Xl and 
W j; throughout this paper, the Euclidean distance measure 

dE(Xl, Wj) = V2:7=1 (Xli - Wji)2 
will be applied. The WTM 

learning rule is formulated as follows: 

where k is the iteration number, T)j (k) is the learning coeffi­
cient, and N (j, jx, k) is the neighborhood function of the jx-th 
winning neuron. Most often the Gaussian-type neighborhood 
functions are used, i.e.: 

(3) 

where >"(k) is the neighborhood radius and dtPl(j,jx) - the 
topological distance between the jx-th and j-th neurons. In 
case of the conventional SOM with lDN, dtPl(j,jx) = Ij -jxl. 
However, when our mechanisms (presented below) for split­
ting and merging of the network structure are implemented, 
the conventional SOM with IDN evolves toward a tree-like 
structure. As a result of that, the neighborhood of a given 
neuron in such a tree-like topology of our generalized SOMs 
is defined along all the arcs emanating from that neuron as 
shown in Fig. 1. Those arcs are the pieces of the conventional 
SOM with IDN. Therefore, dtPl(j,jx) = 1 for all j-th neurons 
being direct neighbors of the jx-th one as illustrated in Fig. 
l. In turn, dtPl(j,jx) = 2 for all j-th neurons being second 
along all paths starting at the jx-th one (see Fig. 1), etc. 

In order to implement three mechanisms, listed as a), b), 
and c) in the first paragraph of this section, four operations 
are activated after each learning epoch (epoch means one pass 
of all learning data), provided that the required conditions are 
fulfilled. 

Fig. I. lIIustration of neighborhood of the jx-th neuron [4], [5] 

Operation 1 (the removal of single low-active neurons): The 
neuron no. jr is removed from the network (preserving the net­
work continuity - see [3] for details) if its activity - measured 
by the number of its wins winje - is below an assumed level 
winmin, i.e., winje < winmin' winmin is experimentally 
selected parameter (usually, winmin E {2, 3, 4}). 

Operation 2 (the disconnection of the network (subnetwork) 
into two subnetworks): The disconnection of two neighboring 
neurons j1 and j2 takes place if the following condition is 
fulfilled: d( W j, , W h) > dcoejdavr where davr = J; 2::=1 dp 
is the average distance between two neighboring neurons for 
all pairs p, p = 1,2, ... ,P, of such neurons (d, davr, and dp 
are the Euclidean distance measures). d coej is experimentally 
selected parameter (a distance coefficient) governing the dis­
connection operation (usually, d coej E [3,4]). Possible very 
short (single- or two-neuron) subnetworks are removed from 
the system since they cannot be reconnected by Operation 4 
(see below). 

Operation 3 (the insertion of additional neurons into the 
neighborhood of high-active neurons in order to take over 
some of their activities). Case 3a: A new neuron, labelled as 
(new) , is inserted between two neighboring and high-active 
neurons j1 and j2 (i.e., their numbers of wins Winj, and 
win12 are above an assumed level winmax: winj" win12 > 
winmax). winmax is experimentally selected parameter (usu­
ally winmax E {2, ... , 5} and winmax � winmin, where 
winmin is defined in Operation 1). The weight vector W(new) 
of the new neuron is calculated as follows: w(new) = Wh �Wh . 
Case 3b: A new neuron (new) is inserted in the neigh­
borhood of high-active neuron j1 surrounded by less-active 
neighbors (i.e., winj, > winmax and winj :( winmax for 
j such that dtpl(j,jd = 1). The weight vector w(new) = 

[W(new)1,W(new)2, ... ,W(new)nV is calculated as follows: 
w(new)i = Wjd(l + �i)' i = 1,2, ... , n, where �i is a random 
number from the interval [-0.01,0.01] (see [3] for details). 

Operation 4 (the reconnection of two selected subnet­
works): Two subnetworks Sl and S2 are reconnected by 
introducing topological connection between neurons j1 and 
j2 (j1 E Sl, j2 E S2) after fulfilling condition d(Wj" wi» < 

da'v'rs +da'vrs 
dcoej l2 

2
. d(Wj" Wi» and dcoej are the same as in 

Operation 2. davrs, and davrS2 are calculated for subnetworks 
Sl and S2, respectively, in the same way as davr is calculated 
in Operation 2 for the considered network. 
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According to Kohonen's comments [7], the selection of 
learning parameters is performed mainly in an experimental 
way assuming that the learning coefficient T)( k) and the neigh­
borhood radius >"(k) should be some monotonically decreasing 
functions of time (>"(k) can also be constant in time). Based 
on that, in our experiments T)j(k) = T)(k) of (2) is linearly 
decreasing over the learning horizon (with 10000 epochs) 
from 7.10-4 to 10-6, >"(k) = >.. of (3) is equal to 2, 
the initial number of neurons in the network is equal to 2, 
winmin = 2, winmax = 4, and dcoej = 4. The experiments 
on some benchmark data sets (see the following section) 
demonstrate that the sarne set of experimentally selected pa­
rameters governing the number of neurons in the network and 
its structure splitting and merging mechanisms gives excellent 
results in quite different (in terms of data dimensionality and 
cluster complexity) applications. They show, in a way, a low 
sensitivity of our approach to the selection of those pararneters. 

III. A BENCHM ARK-DATA-BASED ILLUSTRATION AND 

EVALUATION OF OUR CLUSTERING TECHNIQUE 

In order to illustrate the operation and to evaluate the 
performance of our approach, the clustering of two benchmark 
data sets from the so-called Fundamental Clustering Problem 
Suite (FCPS) [6] and one benchmark data set from the UCI 
repository of machine learning databases (http://archive.ics. 
uci.edu/ml) will be carried out. The FCPS is a collection 
of benchmark sets that, for different reasons, pose difficult 
problems to clustering algorithms. We selected two benchmark 
sets from FCPS, one two-dimensional (WingNut data set) and 
one three-dimensional (Hepta data set) to illustrate the per­
formance of our approach. According to [6], main clustering 
problems in WingNut are largest densities at cluster borders 
and in Hepta - different densities in clusters. As far as UCI 
repository is concerned, the well-known Wine data set with 
178 records, 13 numerical attributes, and 3 classes/clusters 
was selected. Since the class assignment of particular data 
records and the number of classes is known here, it allows 
us to directly verify the results obtained. However, it must 
be emphasized that the knowledge of the class assignments 
is by no means used by our approach. It works in a fully­
unsupervised way, i.e., it operates on unlabelled data and 
without any predefinition of the cluster number. 

Figs. 3 and 4 present the performance of our clustering 
technique applied to both data sets from FCPS. The figures 
are arranged correspondingly, i.e., part a) represents the data, 
parts b), c), d), e), and f) show the evolution of the tree-like 
structures of the generalized SOMs at different stages of the 
learning process, and parts g) and h) - the plots of the number 
of neurons (g) and the number of subnetworks (clusters) (h) vs. 
epoch number. It can be seen that our approach automatically 
adjusts the number of neurons in particular networks (starting 
from the initial numbers of two neurons) and detects the 
correct numbers of data clusters in both sets by disconnecting 
the tree-like structures of the generalized SOM into appropri­
ate number of subnetworks. Moreover, based on the obtained 
cluster multi-prototypes and using the aforementioned nearest 
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Fig. 2. Plots of the number of neurons (a) and the number of subnetworks 
(clusters) (b) vs. epoch number (Wine data set) 

TABLE I 
CLUSTERING RESULTS FOR Wine DATA SET 

Class Number Number of decisions for Number Number Percentage 

label of subnetwork labelled: of correct of wrong of correct 
samples decisions decisions decisions 

1 I 2 I 3 

I 59 57 2 0 57 2 96.6% 
2 71 2 65 4 65 6 91.6% 
3 48 0 0 48 48 0 100% 

ALL 178 59 67 52 170 8 95.5% 

multi-prototype algorithm [9], we can find that all data records 
in both sets are correctly assigned to corresponding clusters. 

Figs. 2 and Table I present the performance of our approach 
applied to Wine data set. Firstly, Fig. 2b shows that our ap­
proach detects the correct number of clusters in the considered 
data set. Secondly, since the number of classes and class 
assignments are known in the original set, a direct verification 
of the obtained results is also possible (see Table I). The 
percentage of correct decisions, equal to 95.51 %, regarding 
the class assignments is very high (especially, since it has 
been achieved by the system working in a fully-unsupervised 
way). 

IV. SAMPLE-BASED AND GENE-BASED CLUSTERING OF 

Lymphoma CANCER MICROARRAY DATA SE T 

In this section, the performance of our approach will be 
evaluated in the clustering of microarray gene expression data 
describing the Lymphoma human cancer (the data are available 
from the server of the Shenzhen University, China: http://csse. 
szu.edu.cn/stafflzhuzx/datasets.html). Microarray gene expres­
sion data sets usually contain thousands of original genes (in 

3668 2016 International Joint Conference on Neural Networks (/JCNN) 



a) b) 
1.0 r:--;-::---;:-��;;_------:-_' 1.0 -r--;-::--,;::-. .. ...,"::::,. ,�. "", ., ... -------c:--1 

0.8 , 
. , 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 
c) d) 
1.0 -r--;-::--';-. . ,"".

"::::" :�' ,.""., .'.: ,-------c:--1 .' . 
�'.- :' ;'�"''; :# 

1.0 -r--;-::--:--c:::�...,,;;_------:-_, 

0.8 

0.6 

0.4 

0.2 

'. ' . ' 
�. �,':' 

. .. �, : 
I 

• �� � ,  

,' ,< 

0.8 

0.6 

0.4 

0.2 

. . ,  
� .' -' . . . 

. � ' -
• • • • # 

0.0 +---'-�-�--"'i--'"=-r"-..:.-! 0.0 
' :::- . ,.::,::. : 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 
e) f) 
1.0 r:::;;;\i1�-:-::-:--:;;l 1.0 

0.8 

0.6 

0.4 

0.2 

0.2 

g) 
500 

(/) c 400 
e 
:::l 
i!? 300 

'0 
Q; 200 .0 E � 100 

0 

h) 
5 (/) .:s:. 0 4 � <J.) C .0 :::l (/) 

'0 
Q; .0 E 
:::l 

Z 
0 

0.4 0.6 

Ir 

0 2000 

0 2000 

0.8 

0.8 

0.6 

0.4 

0.2 

1.0 

4000 6000 
Epoch number 

4000 6000 
Epoch number 

0.4 

8000 

8000 

0.6 0.8 

-

10000 

10000 

1.0 

Fig. 3. WingNut data set (a) and the evolution of the generalized tree-like 
SOM in it in learning epochs: b) no. 5, c) no. 50, d) no. 100, e) no. 500, and 
f) no. 10 000 (end of learning), as well as plots of the number of neurons (g) 
and the number of subnetworks (clusters) (h) vs. epoch number 
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Fig. 4. Hepta data set (a) and the evolution of the generalized tree-like SOM 
in it in learning epochs: b) no. 5, c) no. 50, d) no. 100, e) no. 500, and f) no. 
10 000 (end of learning), as well as plots of the number of neurons (g) and 
the number of subnetworks (clusters) (h) vs. epoch number 
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our case, 4.026) and a small number of samples (in our case, 
62). The samples represent three types of lymphoma cancer, 
referred to as diffuse large B-cell lymphoma (DLBCL) with 
40 samples, follicular lymphoma (FL) with 9 samples, and 
chronic lymphocytic leukemia (CLL) with 13 samples [14]. As 
already mentioned in the introduction, it is meaningful in gene 
expression data analysis to consider both the sample-based and 
gene-based clustering. In the first case, the samples are the 
objects and the genes are the features, whereas in the second 
case it is the opposite. Since a very small number of data 
samples is available, the parameter winmax that (together with 
winmin) controls the overall number of neurons in the network 
is reduced to winmin, i.e., winmax = winmin = 2. For the 
same reason, the distance coefficient dcoef is slightly reduced 
(dcoef = 3). The remaining parameters are unchanged. 

Figs. 5, 6, 7, and 8 present the performance of our clustering 
algorithm applied to the considered data set. Figs. 5 and 6 
show the plots of the number of neurons and the number 
of subnetworks (clusters) vs. epoch number for the sample­
based and gene-based clustering respectively. In the case of 
the sample-based clustering, the number of clusters in the data 
set and the cluster assignments of particular data samples are 
known. Therefore, a direct verification of the obtained results 
is possible (see Table II). It should be emphasized, however, 
that our approach - similarly as in Section III - does not 
use that knowledge during its operation; it is used after the 
completion of the learning process to evaluate the obtained 
results. Fig. 5b shows that our approach detects the correct 
(equal to 3) number of sample clusters in the considered 
data set. The percentage of correct decisions, equal to 93.6% 
(see Table II for details), regarding the cluster assignments 
of particular data samples is higher than in case of several 
alternative approaches (see Table III). Moreover, the first three 
approaches of Table III additionally require the cluster number 
to be defined in advance. 

In the case of the gene-based clustering, our approach 
detects 117 gene clusters (see Fig. 6b). Fig. 7 presents the 
pseudocolor image of some of them. Each of those clusters 
can be easily divided into three subclusters related to DLBCL, 
FL, and CLL samples. Therefore, the results generated by 
our approach correspond, in a way, to the so-called subspace 
clustering which is highly desirable in micro array data analysis 
(see discussion in [2]). The subspace clustering captures 
clusters created by a subset of genes across a subset of 
data samples (in our case, DLBCL, FL, and CLL samples 
separately). Fig. 8 shows the plots of the expression levels 
of all genes in the gene clusters of Fig. 7 confirming the 
compactness of particular clusters (as well as DLBCL, FL, and 
CLL related subclusters). The pseudocolor image of particular 
clusters of Fig. 7 (supported by Fig. 8) can be used in a 
deeper genetics-based discussion of the obtained results, which 
due to a limited space is not possible here (we can only 
briefly address one cluster of Fig. 7 which contains the highest 
number of genes with known IDs, i.e., the LY-96 gene cluster). 

The interpretation of the obtained gene clusters is possible 
on the basis of statistical analysis performed with the use 
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(clusters) (b) vs. epoch number for the sample-based clustering of the 
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of specialized and dedicated software. In our experiments, 
we use a publicly available functional profiling tool, i.e., the 
DAVID (Database for Annotation, Visualization and Integrated 
Discovery) software, available from the server of Laboratory 
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Fig. 7. Exemplary gene clusters in the Lymphoma data set 

of Immunopathogenesis and Bioinformatics, National Cancer 
Institute at Frederick, USA (http://david.abcc.ncifcrf.gov). In 
the Lymphoma set, only 2.382 genes (59.2% of the overall 
number of genes) have unique gene IDs. IDs of the remaining 
genes are unknown (see the labels "unknown" in Fig. 7). In 
order to perform an analysis of the gene-based clustering using 
the DAVID tool, it is necessary to convert the initial gene IDs 
to the so-called Ensembl format. The conversion was made 
by means of GeneCards: Human Gene Database available at 
the Weizmann Institute in Israel (http://genecards.org). As far 
as the aforementioned LY-96 gene cluster is concerned, the 
DAVID tool shows that the number of genes belonging to 
that cluster and performing the same functions is very high. 
For instance, 9 genes (i.e., 90% of the overall number of 
genes from LY-96 included in statistical analysis) perform 
the following functions: disulfide bond, signal, and signal 

peptide. In turn, 6 genes (60% of the number of genes) per­
form functions such as extracellular matrix and proteinaceous 

extracellular matrix, etc. Table IV presents a detailed list of 

gene functions characterized by highest statistical significance 
in LY-96 cluster, i.e., the functions for which the p-value 
significance level of the Fisher exact test is not greater than 
lOE-5. In conclusion, the analysis of the LY-96 gene cluster 
confirms the high effectiveness of our clustering technique 
in creating clusters with significant numbers of coexpressed 
genes. Similar analysis can be carried out for other gene 
clusters, as well as for other clustering algorithms for the 
purpose of comparison. 

TABLE II 
RESULTS OF SAMPLE-BASED CLUSTERING OF THE Lymphoma DATA SET 

Class Number Number of decisions for Number Number Percentage 

label of subnetwork labelled: of correct of wrong of correct 
samples decisions decisions decisions 

DLBCL FL CLL 

DLBCL 42 40 2 0 40 2 95.2% 
FL 9 0 7 2 7 2 77.8% 

CLL 11 0 0 II II 0 100% 
ALL 62 40 9 13 58 4 93.6% 
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V. CONCLUSIONS 

The main goal of this paper is the application of the 
clustering technique proposed by us and based on generalized 
tree-like SOMs with evolving splitting-merging structures to 
complex clustering tasks including, in particular, the sample­
based and gene-based clustering of the Lymphoma human 
cancer microarray data set. It is worth emphasizing that our 
approach works in a fully unsupervised way, i.e., using unla­
belled data and without the necessity to predefine the number 
of clusters. It is particularly important in the gene-based 
clustering of microarray data for which the number of gene 
clusters is unknown in advance. During the learning process, 
the structure disconnection and reconnection mechanisms of 
the tree-like SOMs are activated and the automatic adjustment 
of the number of neurons in SOMs takes place. As a result, our 
approach automatically detects the number of clusters (equal 
to the number of disconnected subnetworks) in a given data 
set and generates multi-prototypes for particular clusters. The 
Lymphoma data clustering process is preceded in the paper 
by a brief presentation of our approach and its testing on 
the benchmark data sets selected from the FCPS collection 
and UCI repository. It is worth stressing that almost the 
same set of experimentally selected parameters that control 
the operation of our clustering technique gives very good 
clustering results for completely different types of data sets 
such as the FCPS and UCI benchmarks and microarray data. It 
is also worth emphasizing that in the sample-based clustering 
of the Lymphoma data set our approach gives much higher 
percentage of correct decisions than alternative techniques 
(some of them additionally require the cluster number to be 
defined in advance). As far as the gene-based clustering of 
the Lymphoma data set is concerned, our approach generates 
clusters that are easily divisible into subclusters related to 
particular sample classes; in some way, it corresponds to 
subspace clustering which is highly desirable in microarray 
data analysis [2]. 

No. 

I 
2 
3 
4 
5 

TABLE III 
COMPARATlVE ANA LYSIS OF SAMPLE-BASED CLUSTERING OF THE 

Lymphoma DATA SET 

Number of Number of Percentage 0 

Clustering technique*) correct wrong correct 
decisions decisions decisions 

k-means 42 20 67.7% 
EM 38 24 61.3% 

FFTA 47 15 75.8% 
our approach of [10] 57 5 91.9% 

our present approach 58 4 93.6% 
*) -m ns I EM - Ex i n M ximiz k ea . [ 5], pectat 0 a i n I at 0 [ 6], FFTA - F  Firs' arthest . t 
Traversal Algorithm [17] 
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Fig. 8. Plots of the expression levels of all genes in each gene cluster of Fig. 7 
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